If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+66x-240=0
a = 12; b = 66; c = -240;
Δ = b2-4ac
Δ = 662-4·12·(-240)
Δ = 15876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{15876}=126$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(66)-126}{2*12}=\frac{-192}{24} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(66)+126}{2*12}=\frac{60}{24} =2+1/2 $
| 1/6x-4=22 | | 1k+k=-11+4k+k | | 6x-3x/18= | | 12y-6=3(4y-2) | | 0=(16.0)t-4.9t^2 | | x2+2x+6=9 | | 6x-9x-8=-3x+3-8 | | 4t-3+2t=15 | | 2x*3+6x=540 | | 12x-4=15+45 | | 3x-1=-3x-9 | | 56n^2+120n+16=0 | | 14v^2-2v=0 | | 87=-2(-6x-5)-x | | 3x+1=-(2x+4) | | 0=x^2-36 | | v=6^2-12 | | -5+1=5x+1 | | 5+x/x+3/4=7/x | | 7/6(d-18)-23=19 | | 2x+11=-39 | | -4b+7b=2b-b+10 | | 5=17.5x-10 | | 14b^2-66b-20=0 | | 15=17.5x | | 6x-3x/18=48 | | 15x+5=-1+16x | | 3(2x-8)=4x+16 | | 10x^2+42x+28=0 | | 8k-6=9+8k-5-5k | | 15=m9-m4 | | x=(7*19)-8+(6*19)+11 |